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Abstract It is conjectured that every fullerene graph is hamiltonian. Jendrol’ and
Owens proved [J. Math. Chem. 18 (1995), pp. 83–90] that every fullerene graph on
n vertices has a cycle of length at least 4n/5. In this paper we, improve this bound to
5n/6 − 2/3.
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1 Introduction

Fullerenes are carbon-cage molecules comprised of carbon atoms that are arranged on
a sphere with twelve pentagon-faces and other hexagon-faces. The icosahedral C60,
well-known as Buckministerfullerence, was found by Kroto et al. [8], and later con-
firmed through experiments by Krätchmer et al. [7] and Taylor et al. [13]. Since the
discovery of the first fullerene molecule, the fullerenes have been objects of interest
to scientists in many disciplines.
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Many properties of fullerene molecules can be studied using mathematical tools and
results. Thus, fullerene graphs were defined as cubic (i.e. 3-regular) planar
3-connected graphs with pentagonal and hexagonal faces. Such graphs are suitable
models for fullerene molecules: carbon atoms are represented by vertices of the graph,
whereas the edges represent bonds between adjacent atoms. It is known that there
exists a fullerene graph on n vertices for every even n ≥ 20, n �= 22. See the mono-
graph of Fowler and Manolpoulos [2] for more information on fullerenes.

The hamiltonicity of planar 3-connected cubic graph has been attracting much
interest of mathematicians since Tait [12] in 1878 gave a short and elegant (but also
false) proof of the Four Color Theorem based on the “fact” that planar 3-connected
cubic graphs are hamiltonian. The missing detail of the proof was precisely the pre-
viously mentioned “act” which became known as Tait’s Conjecture. Later, Tutte [15]
disproved Tait’s Conjecture.

The hamiltonicity of various subclasses of 3-connected planar cubic graphs was
additionally investigated. Grünbaum and Zaks [5] asked whether the graphs in the
family G3(p, q) of 3-connected cubic planar graphs whose faces are of size p and
q with p < q are hamiltonian for any p, q. Note that p ∈ {3, 4, 5} by Euler’s for-
mula. Also note that fullerene graphs correspond to G3(5, 6). Goodey [3,4] has proved
that all graphs contained in G3(3, 6) and G3(4, 6) are hamiltonian. Zaks [17] found
non-hamiltonian graphs in the family G3(5, k) for k ≥ 7. Similarly, Walther [16]
showed that families G3(3, q) for 7 ≤ q ≤ 10 and G3(4, 2k + 1) for k ≥ 3, contain
non-hamiltonian graphs. For more results in this area, also see [9–11,14].

Let us restrict our attention to G3(5, 6). Ewald [1] proved that every fullerene graph
contains a cycle which meets every face of G. This implies that there is a cycle through
at least n/3 of the vertices of any fullerene graph on n vertices. It is well known that
each planar graph G has a dominating cycle C , i.e. a cycle C such that each edge of
G has an end-vertex on C . If G is a fullerene graph, then its 3-connectivity yields that
G − C is comprised of a (possibly empty) set of isolated vertices. This immediately
improves the bound from n/3 to 3n/4. Jendrol’ and Owens [6] gave a better bound of
4n/5. In this paper, we improve the bound to 5n/6 − 2/3.

2 Preliminary observations

We follow the terminology of Jendrol’ and Owens [6]. We consider a longest cycle
C of a fullerene graph; a vertex contained in C is black and a vertex not contained in
C is white. Our aim is to show that there are at most n/6 + 2/3 white vertices for an
n-vertex fullerene graph G. The following was shown [6].

Lemma 1 Let G be a fullerene graph and C a longest cycle in G. The graph G
contains no path comprised of three white vertices.

Lemma 1 implies that no face of G is incident with more than two white vertices
(see Fig. 1 for all possibilities, up to symmetry, how the cycle C can traverse a face of
G). The faces incident with two white vertices are called white and the faces incident
with no white vertices are called black. Let us now observe the following simple fact.
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Fig. 1 The possible ways for a cycle C to traverse a face of size five or six (up to symmetry) without
forming a path of three white vertices. The cycle C is indicated by bold edges
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Fig. 2 Prolonging the cycle C if the graph G contains a white face of size five

Lemma 2 If C is a longest cycle in a fullerene graph G, then there are no white faces
of size five.

Proof Assume that there is a white face v1v2v3v4v5. By symmetry we can assume,
that the cycle C contains the path v3v4v5. Replacing the path v3v4v5 with the path
v3v2v1v5 (see Fig. 2) yields a cycle of G longer than C , a contradiction. ��

In the sequel, we use the following notion. Given a face f with vertices v1, v2, . . . ,

vk (in cyclic order), we let fi,i+1 be the face different from f that contains the edge
vivi+1 (the indices are taken modulo k).

3 Initial charge and discharging rules

Using a discharging argument, we argue that the number of white vertices with respect
to a longest cycle C in an n-vertex fullerene graph G is at most n/6 + 2/3. Fix such a
cycle C . Each white vertex initially receives 3 units of charge. Next, each white vertex
sends 1 unit of charge to each of the three incident faces. Observe that each white
face has 2 units of charge, each black face has no charge and each remaining face has
1 unit of charge each.

The charge is now redistributed based on the following rules (the indices are taken
modulo the length of the considered face where appropriate).
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Fig. 3 Configurations (up to symmetry) to which Rules A and B are applied

Rule A A black face f0 = v1 . . . v6 receives 1/2 unit of charge from the face fi,i+1
if the path vi−1vivi+1vi+2 is contained in the cycle C and the face f is white.

Rule B A black face f0 = v1 . . . v6 receives 1 unit of charge from the face fi,i+1 if
the edge vivi+1 is contained in the cycle C , neither the edge vi−1vi nor the edge
vi+1vi+2 is contained in C and the face f is white.

The Rules A and B are illustrated in Fig. 3.
In Sects. 4 and 5, we show that each face has at most 1 unit of charge after applying

Rules A and B. Based on this fact, we conclude in Sect. 6 that the number of white
vertices is at most f/3 where f is the number of faces of G. The bound on the length
of the cycle C will then follow.

4 Final charge of white faces

In this section, we analyze the final amount of charge of white faces. By Lemma 2, we
can restrict our attention to faces of size six.

Lemma 3 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a white
face of G such that the edges v2v3 and v5v6 are contained in C, then the final amount
of charge of f is 1 unit.

Proof The initial amount of charge of the face f is 2 units. If both the face f23 and
f56 are black faces of size six, then the face f sends 1/2 unit of charge to each of them
by Rule A and thus its final amount of charge is 1 unit.

Assume that the face f56 is not a black face of size six. Hence, the graph G,
up to symmetry, contains one of the configurations depicted in the left column of
Fig. 4. Rerouting the cycle C as indicated in the figure yields a cycle longer than C ,
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Fig. 4 Configurations analyzed in the proof of Lemma 3

a contradiction. Since our arguments translate to the case the face f23 is not a black
face of size six, the proof of the lemma is finished. ��

Lemma 4 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a white
face of G such that the edges v4v5, v5v6 and v6v1 are contained in C, then the final
amount of charge of f is 1 unit.

Proof First, suppose that the face f56 is a face of size five. Rerouting the cycle C as
indicated in the top line of Fig. 5 yields a face of size five incident with two or more
white vertices (the vertices v5 and v6 become white). This is excluded by Lemma 2.

We conclude that the face f56 has size six. For i ∈ {5, 6}, let v′
i be the neighbor

of the vertex vi that is not incident with the face f . The vertex v′
5 cannot be white:

otherwise, rerouting the cycle C as indicated in the bottom line of Fig. 5 yields a path
formed by three white vertices. This is impossible by Lemma 1. Thus, the vertex v′

5
is black. Similarly, the vertex v′

6 is black. Consequently, the face f56 is black and by
Rule B, the face f56 receives 1 unit of charge from the face f . Since the face f sends
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Fig. 5 Configurations analyzed in the proof of Lemma 4

charge to no other face and its initial amount of charge is 2 units, its final amount of
charge is 1 unit. ��
Lemma 5 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a white
face of G such that the edges v3v4 and v5v6 are contained in C and the edge v4v5 is
not contained in C, then the final amount of charge of f is 1 unit.

Proof The initial amount of charge of the face f is 2 units. If both the face f34 and
f56 are black faces of size six, then the face f sends 1/2 unit of charge to each of them
by Rule A and thus its final amount of charge is 1 unit.

Assume that the face f56 is not a black face of size six. Hence, the graph G, up
to symmetry, contains one of the configurations depicted in the left column of Fig. 6.
Rerouting the cycle C as indicated in the figure yields a cycle of G longer than C , a
contradiction. Since our arguments translate to the case where the face f34 is not a
black face of size six, the proof of the lemma is finished. ��

Lemmas 2, 3, 4 and 5 yield the following.

Lemma 6 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. The final amount of charge of any
white face of G is 1 unit.

5 Final charge of black faces

This section is devoted to the analysis of the final charge of black faces. Since no black
face of size five receives any charge, we can restrict our attention to black faces of size
six. The final charge of a black face f of size six is at most one unless the face f is
isomorphic to one of the faces depicted in Fig. 7—note that the amount of charge of
f can exceed 1 unit only if Rule A applies three times to f , Rule B applies twice to f
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Fig. 6 Configurations analyzed in the proof of Lemma 5

Fig. 7 Black faces of size six
that could receive more than 1
unit of charge
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or both Rules A and B apply to f . We analyze each of the configurations separately
in a series of three lemmas.

Lemma 7 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a black
face of G such that the edges v5v6, v6v1, v1v2, v2v3 and v3v4 are contained in C and
the edge v4v5 is not, then the final amount of charge of f is at most 1 unit.

Proof The face f can receive charge only by Rule A from the faces f61, f12 and f23.
Assume for the sake of contradiction that f receives charge of 1/2 unit from each of
these three faces. In particular, G contains, up to symmetry, one of the configurations
depicted in Fig. 8 (recall that G cannot contain a path formed by three white vertices
by Lemma 1). Rerouting the cycle C as indicated in the figure yields a cycle of G
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Fig. 8 Configurations analyzed in the proof of Lemma 7
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longer than the cycle C which contradicts our choice of C . We conclude that Rule A
can apply at most twice to the face f . ��
Lemma 8 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a black
face of G such that the edges v2v3, v4v5, v5v6 and v6v1 are contained in C and the
edges v1v2 and v3v4 are not, then the final amount of charge of f is at most 1 unit.

Proof If the final amount of charge of f is greater than 1 unit, then f receives 1 unit
of charge from the face f23 by Rule B and 1/2 unit of charge from the face f56 by
Rule A. Hence, G contains one of the two configurations depicted in Fig. 9. In either
of the two cases, it is possible to reroute the cycle C as indicated in Fig. 9 to obtain a
cycle of G longer than C , a contradiction. ��
Lemma 9 Let C be a longest cycle of a fullerene graph G. Assume that the discharg-
ing rules as described in Sect.3 have been applied. If f = v1v2v3v4v5v6 is a black
face of G such that the edges v2v3, v4v5 and v6v1 are contained in C and the edges
v1v2, v3v4 and v5v6 are not, then the final amount of charge of f is at most 1 unit.

Proof The face f can receive charge only by Rule B. Assume that Rule B applies
twice to f . By symmetry, we may assume that the charge is given by the faces f23 and
f45. In particular, the graph G contains the configuration depicted in Fig. 10. Reroute
now the cycle C as indicated in the figure. Since the obtained cycle is longer than the
cycle C , we conclude that Rule B cannot apply twice to the face f . ��

Lemmas 7, 8 and 9 yield the following.
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Fig. 9 Configurations analyzed in the proof of Lemma 8
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Fig. 10 The configuration analyzed in the proof of Lemma 9
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Lemma 10 Let C be a longest cycle of a fullerene graph G. Assume that the dis-
charging rules as described in Sect.3 have been applied. The final amount of charge
of any black face of G is at most 1 unit.

6 Main result

Theorem 11 Let G be a fullerene graph with n vertices. The graph G contains a cycle
of length at least 5n/6 − 2/3.

Proof Consider a longest cycle C contained in the graph G and apply the discharging
procedure described in Sect. 3. By Lemmas 6 and 10, every white and black face has
final charge of at most 1 unit. Since the initial amount of charge of other faces is 1 unit
and the other faces do not send out or receive any charge, we conclude that the final
amount of charge of any face of G is at most 1 unit.

Each white vertex has initially been assigned 3 units of charge. Since the final
amount of charge of every face is at most 1 unit, the amount of charge was preserved
during the discharging phase and vertices do not have any charge at the end of the
process, there are at most f/3 white vertices where f is the number of faces of G.
By Euler’s formula, n = 2 f − 4. Hence, there are at most n/6 + 2/3 white vertices.
Consequently, there are at least 5n/6 − 2/3 black vertices and thus the length of the
cycle C is at least 5n/6 − 2/3. ��
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